Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arch Virol ; 168(6): 166, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: covidwho-20238472

RESUMO

Clostridium perfringens is a constituent of the normal gut microbiome in pigs; however, it can potentially cause pre- and post-weaning diarrhea. Nevertheless, the importance of this bacterium as a primary pathogen of diarrhea in piglets needs to be better understood, and the epidemiology of C. perfringens in Korean pig populations is unknown. To study the prevalence and typing of C. perfringens, 203 fecal samples were collected from diarrheal piglets on 61 swine farms during 2021-2022 and examined for the presence of C. perfringens and enteric viruses, including porcine epidemic diarrhea virus (PEDV). We determined that the most frequently identified type of C. perfringens was C. perfringens type A (CPA; 64/203, 31.5%). Among the CPA infections, single infections with CPA (30/64, 46.9%) and coinfections with CPA and PEDV (29/64, 45.3%) were the most common in diarrheal samples. Furthermore, we conducted animal experiments to investigate the clinical outcome of single infections and coinfections with highly pathogenic (HP)-PEDV and CPA in weaned piglets. The pigs infected with HP-PEDV or CPA alone showed mild or no diarrhea, and none of them died. However, animals that were co-inoculated with HP-PEDV and CPA showed more-severe diarrheal signs than those of the singly infected pigs. Additionally, CPA promoted PEDV replication in coinfected piglets, with high viral titers in the feces. A histopathological examination revealed more-severe villous atrophy in the small intestine of coinfected pigs than in singly infected pigs. This indicates a synergistic effect of PEDV and CPA coinfection on clinical disease in weaned piglets.


Assuntos
Coinfecção , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Suínos , Animais , Clostridium perfringens , Coinfecção/epidemiologia , Coinfecção/veterinária , Desmame , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/patologia , Diarreia/epidemiologia , Diarreia/veterinária , Diarreia/patologia , Doenças dos Suínos/epidemiologia , Gravidade do Paciente
2.
Vet Microbiol ; 280: 109727, 2023 May.
Artigo em Inglês | MEDLINE | ID: covidwho-2297087

RESUMO

Our previous study revealed that tissue culture-adapted porcine epidemic diarrhea virus (PEDV) strains, namely KNU-141112-S DEL2/ORF3 and -S DEL5/ORF3, were attenuated to different extents in vivo, suggesting that their independent deletion (DEL) signatures, including 2-amino acid (aa; residues 56-57) or 5-aa (residues 56-60) DEL in the N-terminal domain (NTD) of the spike (S) protein, may contribute to the reduced virulence of each strain. To investigate whether each DEL in the NTD of the S1 subunit is a determinant for the virulence of PEDV, we generated two mutant viruses, named icS DEL2 and icS DEL5, by introducing the identical double or quintuple aa DEL into S1 using reverse genetics with an infectious cDNA clone of KNU-141112 (icKNU-141112). We then orally inoculated conventional suckling piglets with icKNU-141112, icS DEL2, or icS DEL5 to compare their pathogenicities. The virulence of both DEL mutant viruses was significantly diminished compared to that of icKNU-141112, which causes severe clinical signs and 100 % mortality. Interestingly, the degree of attenuation differed between the two mutant viruses: icS DEL5 caused neither diarrhea nor mortality, whereas icS DEL2 caused mild to moderate diarrhea, higher viral titers in feces and intestinal tissues, and 25 % mortality. Furthermore, the icS DEL5-infected piglets displayed no remarkable macroscopic and microscopic intestinal lesions, while the icS DEL2-infected piglets showed histopathological changes in small intestine tissues, including moderate-to-severe villous atrophy. Our data indicate that the loss of the pentad (56GENQG60) residues in S alone can be sufficient to give rise to an attenuated phenotype of PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Infecções por Coronavirus/veterinária , Glicoproteína da Espícula de Coronavírus/genética , Diarreia/veterinária
3.
Pathogens ; 10(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2264405

RESUMO

Porcine epidemic diarrhea virus (PEDV) has negatively affected the welfare of animals and their productivity in South Korea for three decades. A shortage of effective control measures has led to the virus becoming endemic in domestic pig populations. This study aimed to describe how our intervention measures were implemented for PEDV elimination in an enzootically infected farm. We operated a risk assessment model of PEDV recurrence to obtain information about the virus itself, herd immunity, virus circulation, and biosecurity at the farm. Next, we conducted a four-pillar-based two-track strategy to heighten sow immunity and eradicate the virus, with longitudinal monitoring of immunity and virus circulation, involving strict biosecurity, prime-boost pre-farrow L/K/K immunization, all-in-all-out and disinfection practices in farrowing houses, and disinfection and gilt management in wean-to-finish barns. In particular, we observed a high prevalence and long-term survival of PEDV in slurries, posing a critical challenge to PED eradication and highlighting the necessity for consecutive testing of barn slurry samples and for the management of infected manure to control PEDV. Genetic analysis of PEDVs in this farm indicated that genetic drift continued in the spike gene, with a substitution rate of 1.683 × 10-4 substitutions/site/year. Our study underlines the need for active monitoring and surveillance of PEDV in herds and their environments, along with the coordinated means, to eliminate the virus and maintain a negative herd. The tools described in this study will serve as a framework for regional and national PED eradication programs.

4.
Arch Virol ; 167(5): 1381-1385, 2022 May.
Artigo em Inglês | MEDLINE | ID: covidwho-1782822

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a member of the subgenus Embecovirus of the genus Betacoronavirus, and it is ubiquitously distributed in most pig-farming countries worldwide with low clinical incidence. Here, we report the full-length genome sequence and molecular characterization of a novel PHEV strain identified in diarrheic neonates in South Korea. The complete genome of the Korean PHEV strain GNU-2113 was sequenced and analyzed to characterize PHEV circulating in South Korea. The GNU-2113 genome was determined to be 29,982 nucleotides in length, with large unique deletions in the regions encoding nonstructural protein 3 and NS2. It was found to share 95.1-96.9% sequence identity with other global strains. Genetic and phylogenetic analysis indicated that the GNU-2113 strain is distantly related to the existing PHEV genotypes, implying that the virus appears to undergo substantial evolution under endemic pressure. This study provides important information about the genetic diversity of PHEV circulating subclinically in swine herds, which may ensure viral fitness in the enzootic environment.


Assuntos
Betacoronavirus 1 , Doenças dos Suínos , Animais , Betacoronavirus 1/genética , Genoma Viral , Genótipo , Filogenia , República da Coreia , Análise de Sequência de DNA , Suínos
5.
Arch Virol ; 167(2): 441-458, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-1653520

RESUMO

Coronaviruses infect cells by cytoplasmic or endosomal membrane fusion, driven by the spike (S) protein, which must be primed by proteolytic cleavage at the S1/S2 furin cleavage site (FCS) and the S2' site by cellular proteases. Exogenous trypsin as a medium additive facilitates isolation and propagation of several coronaviruses in vitro. Here, we show that trypsin enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in cultured cells and that SARS-CoV-2 enters cells via either a non-endosomal or an endosomal fusion pathway, depending on the presence of trypsin. Interestingly, trypsin enabled viral entry at the cell surface and led to more efficient infection than trypsin-independent endosomal entry, suggesting that trypsin production in the target organs may trigger a high level of replication of SARS-CoV-2 and cause severe tissue injury. Extensive syncytium formation and enhanced growth kinetics were observed only in the presence of exogenous trypsin when cell-adapted SARS-CoV-2 strains were tested. During 50 serial passages without the addition of trypsin, a specific R685S mutation occurred in the S1/S2 FCS (681PRRAR685) that was completely conserved but accompanied by several mutations in the S2 fusion subunit in the presence of trypsin. These findings demonstrate that the S1/S2 FCS is essential for proteolytic priming of the S protein and fusion activity for SARS-CoV-2 entry but not for viral replication. Our data can potentially contribute to the improvement of SARS-CoV-2 production for the development of vaccines or antivirals and motivate further investigations into the explicit functions of cell-adaptation-related genetic drift in SARS-CoV-2 pathogenesis.


Assuntos
COVID-19 , Internalização do Vírus , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA